SUBCUTANEOUS ICD AND ITS ROLE AND ADVANTAGE IN PREVENTION OF SUDDEN CARDIAC DEATH

ASSOC.PROF. FARID ALIYEV BAKU HEALTH CENTER

Effective defibrillation without transvenous leads

- Effective detection and conversion of induced and spontaneous VT/VF episodes^{1,2}
- Low rates of significant clinical complications¹
- Effective discrimination of AF and SVT from VT/VF^{1,2,3}
- Rate of inappropriate therapy is consistent with transvenous ICDs^{1,2,3}

Sophisticated technology

- · Identifies and classifies the heart rhythm, rather than individual beats
- · Revolutionary approach to sensing the subcutaneous signal
- INSIGHT™ algorithm effectively discriminates between treatable and other high-rate supra-ventricular events
- · Designed to allow self-termination of non-sustained tachyarrhythmia

Durable subcutaneous electrode design

- Subcutaneous placement avoids intra-cardiac biomechanical stresses
- Multistrand cable-core design provides exceptional tensile strength
- Durable polyurethane body is highly resistant to abrasion

New Solution for a broad range of patients at risk for SC

- Effective for a majority of primary and secondary ICD candidates*
- Alternative for TV-ICD replacements due to lead malfunction/infection
- · Ideal for primary electrical or structural heart disease
- Appropriate for a broad range of body types

Entirely Subcutaneous ICD

The S-ICD System may be implanted using only anatomical landmarks, thereby eliminating the need for fluoroscopy during implant:

- Reducing radiation exposure for both patients and physicians
- Eliminating the need for lead apron during implan

Post-op 30 days

Post-op 30 days

Post-op 60 days

PHASE I Detection

Subcutaneous signal detection

PHASE II Certification

Heart rate determined

PHASE III

Therapy Decision

Heart rhythm assessed and confirmation for therapy

THREE SIMULTANEOUS RHYTHM ANALYSES:

- Static morphology analysis identifies nonshockable rhythms, utilizing the NSR (normal sinus rhythm) template.
- Dynamic morphology analysis identifies shockable polymorphic rhythms by comparing each complex to the previous ones.
- QRS width analysis compares the QRS width to the NSR QRS width.

Ventricular Tachycardia

S-ICD System Indication

S-ICD System Implants

INAPPROPRIATE SHOCK RATE

S-ICD Conversion Rates

ATLAS Randomized Controlled Trial: S-ICD Superior to TV-ICD

Enrollment and Randomization Protocol

Contemporary programming

· Contemporary programming

The ATLAS trial met its **primary superiority endpoint**demonstrating a highly significant 92% reduction in serious
lead-related complications* at six months for the EMBLEM™ SICD compared to any manufacturers single chamber TV-ICD
devices. p=0.003¹

Serious lead-related complication* occurred in **12 times** as many patients in the single chamber TV-ICD arm (4.8%) at six months compared to 1 patient (0.4%) in the S-ICD arm.¹

Future upgrade pathway with the Modular CRM (mCRM™) System*

Should patients currently implanted with an EMBLEM S-ICD device develop a need for intracardiac ATP and/or bradycardia pacing, an upgrade pathway will be available once the EMPOWER Leadless Pacemaker (LP)* and mCRM system receive FDA approval.

The mCRM system is designed to provide upgrade pathways regardless if the EMBLEM S-ICD or EMPOWER LP is implanted first, providing physicians flexibility to tailor therapy to the individual patient's needs.²

EMBLEM S-ICD

The only extrathoracic implantable defibrillator that provides protection from both sudden cardiac death and the risks and complications associated with transvenous leads.

- Eliminates potential for vascular injury, transvenous lead insertion complications, lead-associated tricuspid regurgitation, mechanically induced pro-arrhythmia, and transvenous lead failure and associated extraction risk
- · Reduces risk of systemic infection
- Preserves the vasculature
- Remains outside the ribcage, never touching the heart

EMPOWER LP*

The EMPOWER LP is designed to be paired with S-ICD to provide pacing or ATP therapies at the time they are needed.

- ATP when commanded by a paired S-ICD
- · Delivery system with inner extendable shaft
- 20.7 F delivery catheter
- Dedicated retrieval catheter
- Rate response via accelerometer
- > 10 Year average longevity expected when used primarily for ATP therapy as part of an mCRM System

OCT 23, 2023

Medtronic receives FDA approval for extravascular defibrillator to treat abnormal heart rhythms, sudden cardiac arrest

MDT-Aurora-EV-ICD-illustration-in-chest-high-res Medtronic Aurora EV-ICD™ system

- Anti-tachycardia Pacing (ATP), to terminate ventricular arrhythmias (rapid and/or chaotic activity of the heart that can lead to SCA) using low-energy pacing pulses, potentially avoiding a defibrillation shock.
- Pause Prevention Pacing, to provide back-up pacing for brief, intermittent, heartbeat pauses.
- 40 Joule Defibrillation Energy, to deliver life-saving shocks in a device the size of transvenous ICDs (33 cc)
- Medtronic exclusive PhysioCurve[™] design, to increase patient comfort and implant acceptance.
- 11.7-year projected longevity, to reduce device replacement procedures during a patient's lifetime.

THANK YOU FOR YOUR ATTENTION.

Dr. Farid Aliyev